
A Multi-Task Deep Learning Model for Inflation

Forecasting: Dynamic Phillips Curve Neural Network

Robert Proner*

August 23, 2023

Abstract

Managing inflation is vital for a stable economy, but forecasting remains challenging. In

recent years, off-the-shelf machine learning (ML) methods such as random forests have

been shown to outperform traditional benchmarks. I introduce the Dynamic Phillips

Curve Neural Network (DPCNet), a deep multi-task learning model, to jointly forecast

inflation and unemployment. DPCNet incorporates economic structure and dynamics,

leading to significant gains in out-of-sample forecast accuracy compared to traditional

benchmarks and state-of-the-art ML models.
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1 Introduction

Precise inflation forecasts are crucial for effective monetary and fiscal strategies. However,

due to the complexities of business cycle transitions and the abundance of shocks, accurately

forecasting inflation remains challenging. ML methods, especially neural networks, excel in

high dimensional environments possessing complex nonlinear interactions. Thus, these meth-

ods are well-suited for forecasting macroeconomic variables, which are likely driven by many

complex relationships. Unsurprisingly, in recent years ML has been shown to be effective in

forecasting inflation and other macroeconomic variables, outperforming traditional bench-

marks (Medeiros and Vasconcelos (2016); Garcia et al. (2017); Aras and Lisboa (2022),

Almosova and Andresen (2023) Medeiros et al. (2021)). In this paper, I introduce DPCNet,

a deep multi-task learning (MTL) model that jointly forecasts inflation and unemployment.

MTL, a form of inductive transfer (Caruana, 1997), enhances the model’s ability to learn

by tackling related tasks simultaneously. DPCNet addresses inflation forecasting challenges

by imposing economic structure through MTL and learning complex dynamic interactions

within a large set of macroeconomic variables.

The empirical results demonstrate that the DPCNet significantly outperforms all com-

peting models at all forecast horizons, with gains as high as 22% in mean absolute error over

random forests. Diebold-Mariano (DM) tests confirm that DPCNet generates statistically

lower average forecast errors than competing models. The results also demonstrate that the

set of inflation drivers is not sparse, reverberating the findings of Medeiros and Vasconcelos

(2016). Finally, I show that labour variables and interest and exchange rates are consistently

among the most important across forecast horizons.

The paper has several contributions. First and foremost, I introduce an innovative MTL

architecture using unemployment as an auxiliary task, significantly improving out-of-sample

inflation forecast accuracy compared to traditional benchmarks and state-of-the-art ML mod-

els. Secondly, I show nonlinearities matter. Nonlinear methods systematically outperform

linear ML models and traditional benchmarks. Thirdly, I provide insight into the most im-
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portant variables of inflation according to the DPCNet, which I find to be labour variables

and interest and exchange rates. Additionally, I show the set of relevant variables for fore-

casting inflation is not sparse. Finally, I add to the growing literature showcasing ML and

high-dimensional data’s success in macroeconomic forecasting tasks.

2 Methodology

In the most general form, I describe inflation h-periods ahead as

πt+h = fh(xt) (1)

where xt is a p-dimensional vector of covariates at time t, which may include inflation and

unemployment autoregessive terms, and fh is a function which maps xt to πt+h. Similarly,

I describe the change in the unemployment rate h-periods ahead as

δt+h = gh(xt) (2)

The objective is to estimate a functional form that links the p-dimensional vector of covariates

xt to inflation h-periods ahead πt+h. To acheive this objective, I introduce a dynamic

MTL architecture that employs δt+1 as an auxillary task, jointly modeling inflation and

unemployment with a single functional form, imposing an economically motivated constraint

on fh and gh.

2.1 Models

2.1.1 Dynamic Phillips Curve Neural Network (DPCNet)

Hazell et al. (2022) find the Phillips curve (PC) flattened considerably after the Volker dis-

inflation period. It is therefore unsurpring that the PC has been found to underperform

simple univariate models in forecasting US inflation (Atkeson and Ohanian (2001), Lanne
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and Luoto (2012), Dotsey et al. (2018)). However, the PC models explored in this liter-

ature are limited to linear specifications, which are insufficient for capturing the complex

dynamics of modern economies. Furthermore, the traditional PC models assume that the

flow of impact on future inflation is through unemployment. Meanwhile, inflation and un-

employment dynamics are driven jointly through broader aggregate demand shocks (Ribba,

2006). I incorporate this economic structure by modeling inflation and unemployment us-

ing a shared representation, the DPCNet. The DPCNet is a deep recurrent neural network

(RNN) for forecasting inflation, which utilizes unemployment as an auxiliary task to improve

out-of-sample performance. MTL can improve out-of-sample performance through several

mechanisms, including implicit data amplification, attribute selection, eavesdropping, and

representation bias (Caruana (1997), Ruder (2017)), ultimately improving generalization

and performance. In particular, MTL amplifies signals from the data and forces the model

to learn more general macroeconomic states and the joint dynamics of inflation and unem-

ployement.

Fitting the DPCNet is done using the backpropagation through time algorithm. The

objective function is the sum of the individual mean squared error (MSE) losses on inflation

and unemployment

L(θ) =
T∑
t=1

(πt+h − π̂t+h)
2 +

T∑
t=1

(δt+h − δ̂t+h)
2,

where πt+h (δt+h) is monthly inflation (monthly change in the unemployment rate) h-periods

ahead.

Figure 1 shows the DPCNet architecture. It employs RNN cells with long short-term

memory (LSTM), which perform dimension reduction akin to principal coponents analysis

(PCA), while extracting macroeconomic hidden states. The hard-sharing layers estimate

common latent factors for inflation and unemployment using the large set of macroeconomic

variables. The task-specific branches consist of LSTM layers, which estimate task-specific

latent factors from the shared macroeconomic states, and dense layers that estimate non-
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linear interactions among the hidden states and output forecasts of their respective task.

Figure 1: DPCNet architecture

This figure shows the architecture of the DPCNet. This specific architecture features three hard-sharing

layers. Numbers above layers denote the number of nodes present in the layer. For the input layer, there

are 122 macroeconomic variables as inputs into the network.

2.1.2 Off-the-Shelf Models

As comparative benchmarks I select several off-the-shelf ML models, linear and nonlin-

ear. Linear models include linear regression (LR), ridge regression (RR), LASSO regression

(LAS), and elastic net regression (EN). Nonlinear models include random forest (RF), gra-

dient boosted trees (GBT), extremely randomized trees (XT), and deep RNNs with 1 to 4

LSTM layers (LS1-LS4). The LSTMs have architectures akin to the DPCNet, except they

do not have the unemployment branch. Off-the-shelf methods are described in the Internet

Appendix IA1. As univariate benchmarks, I follow Medeiros et al. (2021) in selecting the

random walk (RW) and the autoregressive model of order p (AR(p)). I also include a naive

historical mean benchmark (Mean).
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3 Data

The inflation sample spans from April 1960 to December 2020. The predictors consist of

122 macroeconomic variables from McCracken and Ng (2016). Unlike DPCNet and LSTM,

the other off-the-shelf ML methods do not have built-in memory mechanisms. To address

this, these models are fit with 13 inflation and unemployment lags in addition to the 122

macroeconomic variables for a total of 148 variables. To address announcement delays in

macroeconomic data, I adopt the approach suggested by Chen et al. (2021) and Bianchi

et al. (2021), which involves lagging all predictor variables by an additional month.

The forecast variable is 1-month inflation, defined as πt = log(Pt)− log(Pt−1), where Pt is

the level of the price index at time t. In the same fashion as Medeiros et al. (2021), I forecast

monthly inflation for 1 to 12 months ahead and I produce forecasts of 3-, 6-, and 12-month

inflation by aggregating the monthly inflation forecasts, with one exception: Inflation over

the last h months is used as the h-month RW forecast. The price index used in this study is

CPI on all items (CPIAUCSL in FRED-MD). The unemployment forecast variables is the

1-month change in the unemployment rate (UNRATE), defined as δt = ut − ut−1.

I use an expanding window to generate inflation forecasts, refitting models annually. The

first training window spans from March 1960 to December 1989 and out-of-sample inflation

forecasts for each horizon are generated in 1990. Subsequent training windows are then

expanded by one year. When refitting, the neural networks hyperparameters are tuned over

a validation set, consisting of the last five years of the training window, using MSE loss on

the validation set as a criterion for early stopping. The hyperparameters of the linear and

tree-based models are tuned using a time series cross validation procedure with 5 folds.

4 Results

Table 1 presents the root mean squared error (RMSE) of each model as a percentage of

the RW forecast error at the 1–12 month(s) ahead forecast horizons as well as 3-, 6-, and
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12-month accumulated inflation. Results using mean absolute error (MAE) are available in

IA2. I compare 17 models in total: RW, Mean, AR(p), LR, RR, LAS, EN, RF, XT, GBT,

LS1-LS4, and the DPCNet with 1, 2, and 3, hard-sharing layers (DP1, DP2, DP3).

Columns 1–12 of the table display the average point forecast errors of each model at the 1–

12 steps ahead horizons. First, LR, without any regularization, severely over-fits, resulting in

massive errors. With the addition of regularization, RR, and EN systematically outperform

traditional benchmarks, while LAS systematically outperforms the RW and Mean but not the

AR(p) model. Trees improve upon linear models considerably, systematically outperforming

traditional benchmarks. By adding memory, dynamics, and nonlinear interactions, LSTMs

tend to provide further improvements. Finally, by imposing economic structure, DPCNet

systematically outperforms all competing models and traditional benchmarks at all horizons.

Columns 3m–12m demonstrate that the improvements in forecast accuracy provided by

DPCNet results in dramatic reductions in forecast error on accumulated inflation, with DP3

providing the best accumulated inflation forecasts. DP3 produces forecasts of 12-month

accumulated inflation with RMSE and MAE 20% and 22.1% lower than RF. Notably, most

of the off-the-shelf methods, outperform RW only marginally (if at all) on 12-month inflation

in RMSE, and tend to underperform in MAE.
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Table 1: CPI Inflation Forecast Errors 1990-2020

1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
Model

RW 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mean 83.3 81.2 83.9 82.6 82.7 83.7 82.8 83.8 88.9 89.4 79.4 79.0 92.0 108.6 145.0
AR(p) 83.2 81.4 82.4 82.6 82.5 82.7 82.3 83.4 84.6 84.5 79.8 79.3 91.1 107.3 140.7
LR 123.6 586.3 243.2 131.5 93.4 571.5 402.7 188.0 834.0 520.3 201.3 525.3 424.3 447.4 555.1
RR 77.7 74.2 77.2 74.9 76.1 79.4 76.5 77.5 80.6 85.2 74.5 73.1 75.1 82.5 99.7
LAS 73.3 73.0 75.9 76.7 79.8 80.4 80.4 81.2 83.6 85.9 76.8 77.6 74.2 83.9 100.4
EN 72.8 71.8 76.2 75.6 80.1 76.6 76.2 77.4 82.6 81.3 75.5 77.5 73.5 81.1 99.2
RF 74.7 71.9 74.7 73.9 73.7 73.8 74.5 75.6 79.8 79.5 70.1 69.5 75.5 79.9 93.6
XT 74.2 72.0 74.6 73.4 73.6 74.4 75.4 75.2 80.8 78.6 70.3 69.6 75.4 80.2 94.0
GBT 76.4 75.6 76.4 75.6 77.5 76.1 77.2 77.4 79.5 80.1 71.4 70.8 77.6 82.4 93.8
LSTM1 107.6 449.5 181.6 95.9 122.6 216.1 100.5 295.6 209.0 694.9 121.6 130.9 210.9 180.4 314.9
LSTM2 77.2 80.2 109.3 72.8 77.9 75.6 130.1 74.2 90.7 85.2 142.1 133.9 84.0 79.7 105.6
LSTM3 70.8 85.2 75.0 73.5 80.3 96.9 77.3 79.4 80.2 79.6 77.7 79.1 72.8 79.4 83.6
LSTM4 86.0 74.8 75.9 74.8 73.3 73.4 107.0 77.0 79.6 78.8 71.2 77.2 76.1 77.1 80.7
DPCN1 76.3 72.0 73.1 72.2 74.0 80.1 79.7 73.9 77.4 81.9 67.1 68.5 72.1 79.8 75.6
DPCN2 73.0 70.2 74.4 72.4 71.6 72.6 71.6 73.8 76.5 77.6 68.9 67.3 71.7 73.3 76.3
DPCN3 73.4 69.6 72.0 73.4 71.2 72.6 72.0 72.7 76.3 76.1 68.2 67.8 71.1 73.7 74.9

This table shows the RMSE of all models as a percentage of the RW RMSE over the entire out-of-sample period 1990-2020. The best model at each

forecast horizon is in bold. Columns 3m-12m denote accumulated inflation horizons.
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To compare forecast quality of competing models I use the Diebold and Mariano (1995)

(DM) test. The DM test statistic for model 1 and model 2 is defined as DM1,2 = d̄1,2/σ̂d̄1,2 ,

where d̄1,2 and σ̂d̄1,2 are, respectively, the mean and Newey-West standard error of the squared

forecasting errors, d1,2 = (πt:t+h − π̂
(1)
t:t+h)

2 − (πt:t+h − π̂
(2)
t:t+h)

2, over the test sample.

Table 2 presents the DM test statistics from pairwise comparisons of 12-month accumu-

lated inflation forecasts. Test statistics for the 6- and 3-month inflation forecasts are provided

in Table IA2. A positive test statistic indicates the error of the row model is greater than

that of the column model, and a bold value denotes significance at the 5% level. Shrinkage

methods manage to outperform the RW at 3- and 6-month inflation with moderate to lit-

tle evidence. However, for 12-month inflation, there is no evidence that shrinkage methods

outperform the RW. Trees do better than the linear methods and outperform the RW at

each horizon. However, like the linear models, the evidence in their favor gets weaker as the

horizon increases, resulting in little to no evidence of outperformance on 12-month inflation.

LSTMs tend to perform better than trees, and on 12-month inflation LS3 and LS4 respec-

tively provide very strong and moderate evidence of incurring smaller forecast errors than

the RW. Finally, by incorporating economic structure, DPCNet significantly outperforms

the traditional benchmarks and the other nonlinear methods at all horizons.
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Table 2: Diebold Mariano tests

Mean AR(p) LR RR LAS EN RF XT GBT LS1 LS2 LS3 LS4 DP1 DP2 DP3

RW -3.99 -4.05 -1.07 0.03 -0.04 0.07 0.60 0.56 0.62 -1.11 -0.36 2.56 1.68 2.15 2.32 2.21
Mean 0.33 -1.03 4.76 4.69 4.83 6.96 6.85 6.46 -0.96 2.28 6.17 6.17 7.16 6.91 6.77
AR(p) -1.03 3.04 2.55 2.80 3.14 3.06 3.27 -0.99 3.56 4.37 3.57 3.77 3.93 3.79
LR 1.06 1.06 1.06 1.07 1.07 1.07 1.05 1.07 1.08 1.07 1.08 1.08 1.08
RR -0.15 0.15 0.85 0.91 0.95 -1.08 -0.25 1.90 2.53 3.00 2.96 3.22
LAS 0.53 1.12 1.31 1.27 -1.08 -0.21 1.62 2.83 3.45 3.12 3.62
EN 0.97 1.09 1.12 -1.08 -0.26 1.63 2.71 3.29 3.07 3.49
RF -0.20 -0.07 -1.11 -0.54 1.21 2.07 3.29 2.93 3.12
XT 0.14 -1.11 -0.52 1.24 2.28 3.64 3.18 3.48
GBT -1.11 -0.53 1.28 2.21 3.31 3.12 3.29
LS1 1.13 1.14 1.13 1.14 1.14 1.14
LS2 1.15 0.98 1.18 1.21 1.19
LS3 0.37 1.07 1.17 1.16
LS4 1.41 1.28 2.23
DP1 -0.30 0.35
DP2 0.67

This table presents the DM test statistics for 12-month accumulated inflation. Bold values denote significance at the 5% level. Test statistics are

calculated using Newey-West standard errors.
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5 Which Covariates Matter?

Similar to Gu et al. (2020), I assess variable importance by setting each variable to its mean

across test dates and recording the average reduction in out-of-sample R2 over all forecast

windows. The 20 most important variables for each accumulated inflation horizon under

DPC3 are depicted in Figure 2, while Figure IA2 shows variable importance for monthly

inflation at individual forecast horizons. Additionally, Figure IA3 provides a ranking of

variables by forecast horizon. Finally, The average importance within groups and its variation

with forecast horizons are illustrated in Figure 3.

In Figure 2, labor variables, particularly wage variables (e.g., all employees: financial

activities), consistently rank among the top for accumulated importance. These are followed

by rate variables such as interest rate spreads (e.g., 5-year treasury c minus fedfunds) and

exchange rates (e.g., canada / u.s., foreign exchange rate). Housing starts and permits show

importance for short-term forecasts but disappear from the top-20 variables for 12-month

inflation. Conversely, price variables gain importance for 6- and 12-month inflation despite

being less significant for 3-month inflation.

Figure 3 reveals stable labor and rates group importance across horizons. As with accu-

mulated inflation, importance of prices becomes more stable with longer forecast horizons.

Consumption remains generally important, except for the 2-, 5-, and 10-month periods. In

contrast, the importance of stocks, output, and money is more variable. This variability,

and the variability of variable importance evident in Figure IA3 indicate that the DPCNet

draws from a large set of variables depending on the forecast horizon, demonstrating that

the set of variables is not sparse and is time dependent. These findings are consistent with

Medeiros et al. (2021) at large.
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(a) 3m

(b) 6m

(c) 12m

Figure 2: Accumulated inflation variable importance.

This figure shows the 20 most important variables for each accumulated inflation horizon according to DPC3.

Variable importance is computed as the average reduction in R2 from setting the given variable to its mean

over the test sample. Importance values are reported as percentages.
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Figure 3: Group importance by horizon

This figure presents group importance as it varies by forecast horizon relative to the total group importance.

Group importance is calculated by ranking the average variable importance within each group.

6 Conclusion

I demonstrate that by incorporating economic structure with the DPCNet, it is possible

to improve upon inflation forecasts, even over state-of-the-art ML methods such as RF

and single-task LSTM, resulting in massive and significant gains in accumulated inflation

forecasts.

I show that the most important variable groups are labour and rates, consisting of vari-

ables such as payrolls and interest rate spreads and that these are stable across forecast

horizons. In contrast, the importance of individual variables within groups varies according

to the forecast horizon. Combined with the forecast accuracy results, these findings indicate

suggesting the set of relevant variables is not sparse and that inflation-unemployment joint

dynamics are highly complex.
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IA1 Off-the-Shelf Methods

IA1.1 Benchmark Models

Random walk I define the random walk model for forecasting h-period inflation as the

last observed h-period inflation. For example, when forecasting twelve-month inflation, I use

inflation over the last twelve months as the forecast.

Autoregressive model of order p—AR(p) The AR(p) model in my context is a linear

model of p+ 1 autoregressive terms, p lags plus the current month’s inflation.

πt+h = α0 + α1πt + α2πt−1 + ...+ αp+1πt−p + ϵt+h

where ϵt+h ∼ WN(0, σ2). At each training window I select the number of lags p according

to the AIC criteria and the model is fit with OLS.

IA1.2 Linear models

Linear regression Linear regression assumes a linear functional form

πt+h = βh0 + βh1xt1 + ...βhpxtp + ϵt+h

where βhj, j = 1, ..., p are coefficients and ϵt+h is a random error term.

Ridge Regression Ridge regression imposes the ridge or ℓ2 penalty, which shrinks the

β coefficients towards zero. This helps reduce overfitting, which often occurs in high-

dimensional feature spaces where it is likely that some features are colinear, by reducing

the contribution of irrelevant or less important predictors to the output. With the ridge

penalty the loss function becomes
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J(β̂) =
T−h∑
t=0

(πt+h − π̂t+h)
2 + λ

p∑
j=1

β̂2
p

where λ is a hyperparameter and is usually optimized with cross-validation.

LASSO The Least Absolute Shrinkage and Selection Operator (LASSO) imposes the

LASSO or ℓ1 penalty on the loss function which gives

J(β̂) =
T−h∑
t=0

(πt+h − π̂t+h)
2 + λ

p∑
j=1

|β̂p|

The ℓ1 penalty shrinks coefficients towards zero and can set some coefficients to exactly zero,

also performing feature selection. Again, λ is chosen through cross-validation.

Elastic Net Regression Elastic Net Regression imposes the elastic net penalty on the

RSS, which is a combination of ℓ1 and ℓ2 penalties. The amount of each penalty is controlled

by the hyperparameter α

J(β̂) =
T∑
t=1

(πt+h − π̂t+h)
2 + λ

p∑
j=1

1− α

2
β̂2
p + α|β̂p|

For α = 1 the Elastic Net is equivalent to LASSO and for α = 0 it is equivalent to Ridge

Regression. α is chosen through cross-validation.

Ridge Regression, LASSO, and Elastic Net Regression are solved using numerical opti-

mization methods (e.g., gradient descent).

IA1.3 Tree-based methods

Decision Trees Decision trees are simple recursive rule-based procedures that are ca-

pable of capturing non-linear relationships and can be used for regression or classification

tasks. Decision trees are commonly constructed using the Classification and Regression Trees

(CART) algorithm, which proceeds as follows:
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1. Let the data at node m be denoted by Qm. For each split candidate θ = (Xj, s) where

Xj is a feature and s is some threshold, split the data into two subsets

Qleft
m = {(xt, πt+h) : xtj ≤ s} and Qright

m = {xt, πt+h : xtj > s}

where the prediction π̂t + h in each region is given by the mean of the targets in that

region.

2. Evaluate quality of split according to

J(θ) =
Tleft

T
J(Qleft

m ) +
Tright

T
J(Qright

m )

where Tleft (Tright) is the number of observations in the left (right) node.

3. select the parameters θ∗ that minimize J(θ).

4. Repeat for each of Qleft
m and Qleft

m until a desired tree depth is reached, until the number

of samples in each leaf (end node) reaches some set minimum, or until there is only

one sample remaining in each leaf.

The tree depth or the minimum samples per leaf are hyperparameters than can be optimized

via cross-validation. Mathematically, the decision tree forecast can be written as

π̂t+h =
M∑

m=1

π̄t+h,mI(xt ∈ Rm)

where m denotes the region, M is the total number of regions, and π̄t+h,m is the mean

inflation of region Rm.

Bagging Bagging involves building B decision trees, one for each of B bootstrap samples

of the data. The output of the Bagging Regressor is given by averaging the output of each

decision tree
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π̂t+h = π̄t+h,b =
1

B

B∑
b=1

π̂t+h,b

Random Forests Random forests is similar to bagging except at each split, only a random

sample of the features are considered as candidates, typically,
√
p or p1/3 of the features.

This random sampling of the candidate features works to reduce model variance by reducing

correlations between trees.

Extremely Randomized Trees Extremely randomized trees are like random forests ex-

cept the threshold for each split candidate is also chosen randomly, further reducing corre-

lations between trees and consequently model variance.

Gradient Boosted Trees Loosely, building a Gradient Boosted Regression Tree model

involves constructing a number of decision trees sequentially, each tree being fitted on the

residuals of the preceding tree. The first tree is initialized to simply predict the unconditional

mean. Subsequent trees are multiplied by a learning rate λ, which slows training and reduces

overfitting. The final model is the sum of all trees (Trees. Algorithm 1 from Hastie et al.

(2009) outlines this process in more detail

Algorithm 1 Gradient Boosting Regression Trees

1: Initialize f̂0(x) = argminγ

∑T
t=1 L(πt+h, γ)

2: for b = 1, 2, ..., B:

rt+h,b = −∂L(πt+h, f(xt))

∂f(xt)
= πt+h − f(xt)

3: Fit a classification tree on rt+h,b giving terminal regions Rj,b, j = 1, 2, ..., Jb
4: for j = 1, 2, ..., Jb compute

γj,b = argmin
γ

∑
xt∈Rj,b

L(πt+h, fb−1(xt) + γ)

5: update fb(x) = fb−1(x) +
∑Jb

j=1 γj,bI(x ∈ Rj,b)

6: Output f̂(x) = fB(x)
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IA1.4 Deep learning models

LSTM and DPCNet LSTM cells are similar to feed-forward neural network cells, except

that they have the capacity for memory, which is carried from one time step to the next

by two mechanisms, the hidden state ht and the carry ct. This is depicted well in a figure

obtained from Chollet (2018):

Figure IA1: An example of an LSTM cell unrolled through time.

IA1 shows a singular LSTM cell unrolled through time. LSTM cells and other recurrent

neural network (RNN) style cells process data sequentially, rather than in one shot using

matrix multiplication.

Mathematically, the output of an LSTM cell at time t is given by

ot = g(Wo · xt + Uo · ht + Vo · ct) (3)

where Wo, Uo, Vo are matrices of weights, xt is the input at time t, ht is the state at time t

(the previous time steps output) , and ct is the carry, which is similar to the hidden state but

is capable of remembering information from past time steps, and g is an activation function.

At each time step a new carry is computed as
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ct+1 = it × kt + ct × ft

where

it = g(Ui · ht +Wi · xt + bi)

kt = g(Uk · ht +Wk · xt + bk)

ft = g(Uf · ht +Wf · xt + bf )

While we have no way of knowing exactly what each of these components are doing during

the training process, we can think of multiplying ct and ft as forgetting past information

and multiplying it and kt as adding new information to the carry, which will be used down

the line.
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IA2 Hyperparameters

Table IA1 presents the grids used for hyperparameter optimization.

For RR and LAS I tune λ, which determines the strength of the shrinkage penalty. The

larger the value, the stronger the penalty, resulting in smaller model coefficients.

For the EN we tune λ and α. λ determines the strength of the elastic net penalty, with

higher values corresponding to larger penalties, while α controls the combination of ℓ1 and

ℓ2 penalties. For α = 0.0, the EN is equivalent to Ridge regression and for α = 1.0 the EN

is equivalent to the LASSO.

For the RF and XT I tune the number of trees and the maximum depth of each tree. The

number of trees and the number of randomly selected features at each split serve to reduce

variance, while the maximum depth reduces bias. Higher amounts of trees in the ensemble

correspond to greater variance reduction, we iterate over a set of arbitrarily selected values.

Additionally, the less features considered at each split, the greater the variance reduction.

Selecting from a random sample of features when partitioning the feature space reduces the

correlation between trees and makes the ensemble more effective. Typically,
√
p or p/3 have

been shown to work well empirically. Finally, the deeper the tree, the more finely partitioned

the feature space, and consequently, the less samples in each leaf node, the lower the bias.

Bias would be minimized for a particular tree if it was to fit the training data exactly, with

one sample in each leaf node.

For the GBT I tune the learning rate, the number of trees, the sub-sample size, and the

maximum depth of trees. The learning rate is a weighting factor applied to new trees added

to the model. It works by limiting the amount of correction from each tree, like the role of

the learning rate in gradient descent. Unlike RF, trees in GBT are built sequentially, each

correcting the predictions of the previous tree. Thus, unlike RF, the number of trees in GBT

serves to reduce bias rather than variance. The sub-sample size is simply a random subset

of the training data. By building subsequent trees on random samples of the training data,

the ensemble model is less likely to overfit on the training set. Max depth is the same as in
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RF.

In the LSTM and DPCNet I address overfitting with the addition of an ℓ1 penalty on

the layer weights of the network and recurrent dropout. The penalty serves an analogous

function to that of λ in the LAS. Recurrent dropout randomly drops a fraction of recurrent

connections during the training process. This introduction of stochasticity in the network

prevents the network from overfitting to temporal noise. The rate of training convergence

is controlled by the learning rate. The larger the learning rate, the bigger the parameter

updates eith each iteration of gradient descent. A learning rate that is too large can result

in divergence, while a learning rate that is too small risks convergence on local optima.
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Table IA1: Hyperparameter grid

Model Hyperparameter grid

LR
RR λ ∈ {103, 102, ..., 10−3}
LAS λ ∈ {103, 102, ..., 10−3}

EN
λ ∈ {103, 102, ..., 10−3}
α ∈ {0.1, 0.2, ..., 0.9}

RF
#Trees ∈ {100, 200, 500, 1000}

#Features =
√
p

Max depth ∈ {1, 6, 11, ..., 41}

XT
#Trees ∈ {100, 200, 500, 1000}

#Features =
√
p

Max depth ∈ {1, 6, 11, ..., 41}

GBT

learning rate ∈ {10−1, 10−2, 10−3}
#Trees∈ {20, 50, 100, 200}
Subsample ∈ {0.25, 0.5, 1.0}
Max depth ∈ {1, 3, 5, ..., 11}

#Features =
√
p

LSTM

Ensemble = 10
l1∈ {0.0, 10−7}
lr∈ {10−3, 10−2}

Recur. dropout ∈ {0.0, 0.1}
Adam.params = default

DPCNet

Ensemble = 10
l1∈ {0.0, 10−7}
lr∈ {10−3, 10−2}

Recur. dropout ∈ {0.0, 0.1}
Adam.params = default
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IA3 Data

Table IA2: Selected macroeconomic predictor variables from FRED-MD

Group Acronym Description

0 consumption AMDMNOx New Orders for Durable Goods
1 consumption CMRMTSPLx Real Manu. and Trade Industries Sales
2 consumption DPCERA3M086SBEA Real personal consumption expenditures
3 consumption RETAILx Retail and Food Services Sales
4 consumption BUSINVx Total Business Inventories
5 consumption ISRATIOx Total Business: Inventories to Sales Ratio
6 consumption AMDMUOx Unfilled Orders for Durable Goods
7 housing HOUSTMW Housing Starts, Midwest
8 housing HOUSTNE Housing Starts, Northeast
9 housing HOUSTS Housing Starts, South
10 housing HOUSTW Housing Starts, West
11 housing HOUST Housing Starts: Total New Privately Owned
12 housing PERMIT New Private Housing Permits (SAAR)
13 housing PERMITMW New Private Housing Permits, Midwest (SAAR)
14 housing PERMITNE New Private Housing Permits, Northeast (SAAR)
15 housing PERMITS New Private Housing Permits, South (SAAR)
16 housing PERMITW New Private Housing Permits, West (SAAR)
17 labour USCONS All Employees: Construction
18 labour DMANEMP All Employees: Durable goods
19 labour USFIRE All Employees: Financial Activities
20 labour USGOOD All Employees: Goods-Producing Industries
21 labour USGOVT All Employees: Government
22 labour MANEMP All Employees: Manufacturing
23 labour CES1021000001 All Employees: Mining and Logging: Mining
24 labour NDMANEMP All Employees: Nondurable goods
25 labour USTRADE All Employees: Retail Trade
26 labour SRVPRD All Employees: Service-Providing Industries
27 labour PAYEMS All Employees: Total nonfarm
28 labour USTPU All Employees: Trade, Transportation & Utilities
29 labour USWTRADE All Employees: Wholesale Trade

IA4 Results
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Table IA2: Selected macroeconomic predictor variables from FRED-MD

30 labour UEMPMEAN Average Duration of Unemployment (Weeks)

31 labour CES2000000008 Avg Hourly Earnings : Construction
32 labour CES0600000008 Avg Hourly Earnings : Goods-Producing
33 labour CES3000000008 Avg Hourly Earnings : Manufacturing
34 labour CES0600000007 Avg Weekly Hours : Goods-Producing
35 labour AWHMAN Avg Weekly Hours : Manufacturing
36 labour AWOTMAN Avg Weekly Overtime Hours : Manufacturing
37 labour CE16OV Civilian Employment
38 labour CLF16OV Civilian Labor Force
39 labour UNRATE Civilian Unemployment Rate
40 labour UEMP15OV Civilians Unemployed - 15 Weeks & Over
41 labour UEMPLT5 Civilians Unemployed - Less Than 5 Weeks
42 labour UEMP15T26 Civilians Unemployed for 15-26 Weeks
43 labour UEMP27OV Civilians Unemployed for 27 Weeks and Over
44 labour UEMP5TO14 Civilians Unemployed for 5-14 Weeks
45 labour HWI Help-Wanted Index for United States
46 labour CLAIMSx Initial Claims
47 labour HWIURATIO Ratio of Help Wanted/No. Unemployed
48 money BUSLOANS Commercial and Industrial Loans
49 money DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding
50 money M1SL M1 Money Stock
51 money M2SL M2 Money Stock
52 money BOGMBASE Monetary Base
53 money CONSPI Nonrevolving consumer credit to Personal Income
54 money REALLN Real Estate Loans at All Commercial Banks
55 money M2REAL Real M2 Money Stock
56 money NONBORRES Reserves Of Depository Institutions
57 money INVEST Securities in Bank Credit at All Commercial Banks
58 money DTCTHFNM Total Consumer Loans and Leases Outstanding
59 money NONREVSL Total Nonrevolving Credit
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Table IA2: Selected macroeconomic predictor variables from FRED-MD

Group Acronym Description

60 money TOTRESNS Total Reserves of Depository Institutions
61 output CUMFNS Capacity Utilization: Manufacturing
62 output INDPRO IP Index
63 output IPBUSEQ IP: Business Equipment
64 output IPCONGD IP: Consumer Goods
65 output IPDCONGD IP: Durable Consumer Goods
66 output IPDMAT IP: Durable Materials
67 output IPFINAL IP: Final Products (Market Group)
68 output IPFPNSS IP: Final Products and Nonindustrial Supplies
69 output IPFUELS IP: Fuels
70 output IPMANSICS IP: Manufacturing (SIC)
71 output IPMAT IP: Materials
72 output IPNCONGD IP: Nondurable Consumer Goods
73 output IPNMAT IP: Nondurable Materials
74 output IPB51222S IP: Residential Utilities
75 output RPI Real Personal Income
76 output W875RX1 Real personal income ex transfer receipts
77 prices CPIAUCSL CPI : All Items
78 prices CPIULFSL CPI : All Items Less Food
79 prices CUSR0000SA0L5 CPI : All items less medical care
80 prices CUSR0000SA0L2 CPI : All items less shelter
81 prices CPIAPPSL CPI : Apparel
82 prices CUSR0000SAC CPI : Commodities
83 prices CUSR0000SAD CPI : Durables
84 prices CPIMEDSL CPI : Medical Care
85 prices CUSR0000SAS CPI : Services
86 prices CPITRNSL CPI : Transportation
87 prices OILPRICEx Crude Oil, spliced WTI and Cushing
88 prices WPSID62 PPI: Crude Materials
89 prices WPSFD49502 PPI: Finished Consumer Goods
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Table IA2: Selected macroeconomic predictor variables from FRED-MD

Group Acronym Description

90 prices WPSFD49207 PPI: Finished Goods
91 prices WPSID61 PPI: Intermediate Materials
92 prices PPICMM PPI: Metals and metal products:
93 prices DDURRG3M086SBEA Personal Cons. Exp: Durable goods
94 prices DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods
95 prices DSERRG3M086SBEA Personal Cons. Exp: Services
96 prices PCEPI Personal Cons. Expend.: Chain Index
97 rates T1YFFM 1-Year Treasury C Minus FEDFUNDS
98 rates GS1 1-Year Treasury Rate
99 rates T10YFFM 10-Year Treasury C Minus FEDFUNDS
100 rates GS10 10-Year Treasury Rate
101 rates CP3Mx 3-Month AA Financial Commercial Paper Rate
102 rates COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS
103 rates TB3MS 3-Month Treasury Bill:
104 rates TB3SMFFM 3-Month Treasury C Minus FEDFUNDS
105 rates T5YFFM 5-Year Treasury C Minus FEDFUNDS
106 rates GS5 5-Year Treasury Rate
107 rates TB6MS 6-Month Treasury Bill:
108 rates TB6SMFFM 6-Month Treasury C Minus FEDFUNDS
109 rates EXCAUSx Canada / U.S. Foreign Exchange Rate
110 rates FEDFUNDS Effective Federal Funds Rate
111 rates EXJPUSx Japan / U.S. Foreign Exchange Rate
112 rates BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS
113 rates AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS
114 rates AAA Moody’s Seasoned Aaa Corporate Bond Yield
115 rates BAA Moody’s Seasoned Baa Corporate Bond Yield
116 rates EXSZUSx Switzerland / U.S. Foreign Exchange Rate
117 rates EXUSUKx U.S. / U.K. Foreign Exchange Rate
118 stocks S&P 500 S&P’s Common Stock Price Index: Composite
119 stocks S&P: indust S&P’s Common Stock Price Index: Industrials
120 stocks S&P div yield S&P’s Composite Common Stock: Dividend Yield
121 stocks S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio
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Table IA2: CPI Inflation Forecast Errors 1990-2019

1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
Model

RW 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mean 89.8 88.8 93.5 93.0 92.5 88.7 87.5 92.0 95.5 97.6 85.2 86.4 112.3 143.1 177.9
AR(p) 84.3 83.9 85.8 84.8 83.5 82.0 82.2 85.0 86.8 86.0 79.9 80.6 100.8 120.3 145.4
LR 100.7 162.6 123.1 107.8 99.4 158.5 142.2 119.7 199.5 163.4 114.6 157.0 160.9 183.7 214.2
RR 80.4 76.7 78.9 76.9 77.8 77.5 75.5 77.1 78.2 84.1 72.3 74.5 85.2 93.5 102.2
LAS 74.9 78.5 80.3 80.6 83.3 80.5 82.4 85.7 85.4 89.6 79.2 83.0 85.2 96.7 111.9
EN 73.0 75.8 80.1 79.5 81.4 74.7 76.3 79.6 82.5 82.5 76.1 82.9 83.1 93.1 107.8
RF 74.4 73.1 76.1 76.2 75.1 70.9 71.3 74.7 77.0 76.5 67.4 68.6 81.0 91.6 99.9
XT 73.9 72.9 76.6 75.9 75.8 71.9 73.0 75.6 78.9 77.7 68.5 69.6 81.4 92.1 102.0
GBT 75.9 77.8 79.0 79.5 80.4 72.3 73.6 77.9 78.7 78.6 69.3 70.4 83.8 93.7 98.9
LSTM1 86.2 132.6 102.6 87.8 97.5 132.2 88.3 125.3 134.1 182.5 90.2 89.7 114.2 127.0 149.2
LSTM2 75.7 75.8 100.6 72.4 82.7 74.5 84.8 75.5 83.0 86.9 85.0 87.2 86.8 82.9 85.8
LSTM3 72.1 85.2 76.6 74.9 81.0 79.6 75.3 79.7 80.0 82.3 74.3 73.8 78.6 82.5 80.1
LSTM4 81.9 78.6 78.1 79.7 72.8 72.4 79.9 77.2 78.8 79.1 68.2 77.1 82.6 85.0 83.7
DPCN1 75.9 72.5 74.7 74.0 75.1 73.9 76.3 74.4 75.2 80.1 65.1 69.5 73.9 83.3 79.1
DPCN2 70.3 68.9 74.7 73.3 72.3 69.4 68.1 72.9 73.5 77.8 67.4 67.4 74.5 79.7 79.2
DPCN3 70.9 68.4 71.5 74.8 72.5 69.2 67.6 73.1 73.9 74.6 66.8 66.8 72.0 79.3 77.8

This table shows the MAE of all models as a percentage of the RW MAE over the entire out-of-sample period 1990-2019. The best model at each

forecast horizon is in bold. Columns 3m-12m denote accumulated inflation horizons.
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Table IA2: Diebold Mariano tests

Mean AR(p) LR RR LAS EN RF XT GBT LS1 LS2 LS3 LS4 DP1 DP2 DP3

RW -0.62 -0.78 -1.04 1.14 1.09 1.18 1.28 1.23 1.25 -1.23 1.11 1.50 1.43 1.56 1.59 1.57
Mean 0.15 -1.02 4.96 3.36 3.97 7.24 6.86 5.74 -1.10 4.42 4.77 5.30 4.49 5.85 5.75
AR(p) -1.03 2.51 2.19 2.40 2.87 2.75 2.96 -1.16 2.30 3.57 3.11 4.47 3.39 3.36
LR 1.05 1.04 1.05 1.05 1.05 1.05 1.01 1.05 1.06 1.06 1.06 1.06 1.06
RR -0.41 0.58 1.61 1.75 0.13 -1.32 0.47 0.65 3.20 0.41 4.99 5.49
LAS 1.69 0.74 0.68 0.35 -1.28 0.51 0.59 1.14 0.45 1.78 1.71
EN 0.27 0.21 -0.32 -1.31 0.19 0.24 0.78 0.15 1.56 1.48
RF -0.31 -1.24 -1.37 0.04 0.11 0.91 0.02 2.07 1.97
XT -0.94 -1.37 0.09 0.16 0.96 0.07 2.15 2.07
GBT -1.36 0.41 0.64 1.50 0.46 2.38 2.31
LS1 1.37 1.42 1.41 1.45 1.43 1.43
LS2 0.05 0.42 -0.01 0.98 0.92
LS3 0.51 -0.10 1.25 1.12
LS4 -0.47 2.85 2.78
DP1 1.01 0.94
DP2 -0.59

(a) 6m
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Table IA2: Diebold Mariano tests

Mean AR(p) LR RR LAS EN RF XT GBT LS1 LS2 LS3 LS4 DP1 DP2 DP3

RW 0.64 0.90 -1.02 1.52 1.53 1.61 1.75 1.70 1.70 -1.10 0.97 1.76 1.67 1.94 1.90 1.99
Mean 0.16 -1.03 3.72 3.50 3.97 6.62 6.24 4.76 -1.12 1.11 4.87 3.83 6.16 5.13 5.63
AR(p) -1.03 2.34 2.31 2.57 3.11 2.94 2.80 -1.13 0.76 3.01 2.69 3.81 3.47 3.87
LR 1.04 1.04 1.04 1.04 1.04 1.04 1.00 1.03 1.04 1.04 1.04 1.04 1.05
RR 0.87 5.57 -0.13 -0.11 -0.73 -1.19 -1.13 1.42 -0.29 1.05 1.12 1.26
LAS 1.15 -0.36 -0.38 -0.88 -1.19 -1.17 0.62 -0.47 0.62 0.67 0.81
EN -0.65 -0.71 -1.18 -1.19 -1.28 0.36 -0.71 0.48 0.54 0.70
RF 0.11 -1.51 -1.20 -1.10 1.18 -0.21 2.00 1.47 2.07
XT -1.22 -1.20 -1.11 1.16 -0.23 1.82 1.51 2.01
GBT -1.19 -0.81 1.65 0.50 2.21 1.92 2.47
LS1 1.16 1.21 1.20 1.22 1.22 1.23
LS2 1.42 0.96 1.45 1.44 1.53
LS3 -1.18 0.31 0.45 0.72
LS4 1.72 2.50 2.96
DP1 0.16 0.60
DP2 0.55

(b) 3m

This table presents the DM test statistics for 3- and 6-month accumulated inflation. Bold values denote significance at the 5% level. Test statistics

are calculated using Newey-West standard errors.
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IA5 Which Covariates Matter?
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(a) h=1 (b) h=2

(c) h=3 (d) h=4

(e) h=5 (f) h=6

Figure IA2: Monthly inflation variable importance.

This figure shows the 20 most important variables for monthly inflation at each forecast horizon according

to DPC3. Variable importance is computed as the average reduction in R2 from setting the given variable

to its mean over the test sample. Importance values are reported as percentages.
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(g) h=7 (h) h=8

(i) h=9 (j) h=10

(k) h=11 (l) h=12

Figure IA2: Monthly inflation variable importance.

This figure shows the 20 most important variables for monthly inflation at each forecast horizon according

to DPC3. Variable importance is computed as the average reduction in R2 from setting the given variable

to its mean over the test sample. Importance values are reported as percentages.
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Figure IA3: Variable importance across time

This figure presents the most important variables at each forecast horizon. For each forecast horizon,

variables are ranked according to average reduction in R2 over all forecast windows when the value of the

given variable is set to its mean for all samples. Then, variables are sorted from most important (dark blue)

to least (white) according to the sum of the ranks across horizons. The heatmap is split in half to fit on the

page.
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Figure IA3: Variable importance across time (continued)

This figure presents the most important variables at each forecast horizon. For each forecast horizon,

variables are ranked according to average reduction in R2 over all forecast windows when the value of the

given variable is set to its mean for all samples. Then, variables are sorted from most important (dark blue)

to least (white) according to the sum of the ranks across horizons. The heatmap is split in half to fit on the

page.
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Figure IA4: Group importance distributions

This figure presents the distributions of group importance. Group importance is calculated by ranking the

average variable importance within each group.
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